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Université Pierre et Marie Curie
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Abstract—An embedded 3D body motion capture system for
an assistive walking robot is presented in this paper. A 3D camera
and infrared sensors are installed on a wheeled walker. We
compare the positions of the human articular joints computed
with our embedded system and the ones obtained with an other
accurate system using embodied markers, the Codamotion. The
obtained results valid our approach.

I. INTRODUCTION

Elderly or disabled people use walker to stabilise their body
balance while walking. In the last years, some new cognitive
or robotic devices [1], [2], [3], [4] have been proposed in order
to restore ambulation to patients suffering from mild cognitive,
visual and physical impairments. This type of intelligent
mobility assistance can provide high levels of care and safety
for users. The PAM-AID (Personal Adaptive Mobility AID)
project [1] built a mobility aid for the infirm blind which
provides both a physical support for walking and navigational
intelligence. The main objective is in navigation to prevent
collisions: it provides obstacle detection to a visually impaired
person using bumpers, sonars and infra-red based sensors.
Force and torque sensors are mounted on the handles to
estimate the users intent, to share the control of the motorized
walker with the user [2] and to adapt the behaviour of the
robot to the user’s characteristics [3]. Integrating a controlled
two Degrees-Of-Freedom (DOF) mechanism for the handles,
Monimad [4] allows mobility rehabilitation and assistance,
safe walking and safe sit-to-stand transfer. For these systems,
the six-axis force-torque sensor is the main user interface.
In this paper, we propose to embed on an advanced version

Fig. 1: Two versions of the RobuWalker

of Monimad, named RobuWalker (cf. Fig. 1), a new user

monitoring system to perceive his movements and to recognize
his intentions and actions. It consists in a three-dimensional
(3D) human body motion capture system using a SwissRanger
3D camera and two infrared distance sensors (cf. Fig. 9) that
could be embedded on the robot. Providing a fine analysis
of the human motion, this system could help the robot to
detect abnormal situations during the assisted human gait and
therefore control the mobility assistance system accordingly
in order to prevent unexpected and unstable motions [5], [6].

As illustrated in figure 2, the 3D camera provides a 3D
points cloud from the top body (approximately from the knees
to the neck). The infrared sensors are dedicated to the feet
movements capture. A 3D human body model is fitted on the
data provided by the sensors. In order to test this approach,
we have embedded this sensor system on a non-motorized
wheeled walker. The obtained results are compared with a 3D
body reconstruction using Codamotion [7], an accurate motion
capture system (but using embodied markers - cf. Fig. 9). The

Fig. 2: Scheme of the embedded sensors system and the
provided data

rest of the paper is organized as follows: Section II presents
some related works on human motion capture system and
describes 3D human body model used in this study. Section
III explains the proposed method. The experimental setup and
the results are shown in Section IV. This section presents a
comparison between the results obtained from our system and
a complete observation with Codamotion. Finally, Section V
concludes our paper and succinctly describes some ongoing
and future works.
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II. RELATED WORKS

This section briefly describes related works on motion
capture and motivates our hardware and software choices.

A. Human Motion Capture System

Such systems capture the pose changes of a human body
during motion, based on motion sensor technologies [8]. In
general, they can be divided into: 1) the non-visual systems
[9], [10] (e.g. inertial sensor, magnetic sensor and electromyo-
gram, etc.); 2) the visual systems [11], [12] (e.g. marker and
markerless based); 3) a hybrid system [13]. Among visual
marker based systems, the Codamotion [7] could minimize the
uncertainty of movement of a subject, because of the unique-
ness of markers: it has been commonly used as ground truth (as
in this study IV) to evaluate the 3D motion measurements due
to its high accuracy. However, the markers (and most of the
non-visual systems) should be embodied, which is inconsistent
with a realistic use of the robot.

For this reason, we have focused our work on a markerless
system. In this domain, various vision based approaches have
been investigated in the literature (see recent surveys [11],
[12]). The most accurate methods estimate the human pose by
minimizing distance errors between a 3D model body model
and the data extracted from monocular or multiple view images
or videos; these errors could be expressed in the image or
3D space. But they are often designed for static cameras: a
motion based segmentation preprocessing step or a stable and
precise calibration between multiple cameras is often required.
Furthermore they could be cpu time and memory resource
consuming. In order to override these potential limitations,
we propose to use a 3D camera which provides directly 3D
data. Because the robot is size constrained (it should be used
in cluttered locations like home), the low relative distance
between the user and the camera limits the user observation
to his upper-body part; we complete it by using two infrared
distance sensors as explained in section III-A.

B. 3D Human Body Model Description

A 3D human body model Human36 is employed in our
approach. It derives from the Human36 model, which is
based on the anatomical model from the Humanoid Motion
Analysis and Simulation (HuMAnS) toolbox [14] and on
the dynamic model implemented in Arboris. The HuMAnS
toolbox developed at the INRIA in Grenoble offers tools for
the modeling, the control and the analysis of humanoid motion,
being that of a robot or a human. For example, Barthélemy
et al. [15] use this toolbox to reconstruct the joint trajectories
corresponding to the sit-to-stand motion in order to compare
the inertial forces computed from the reconstructed motion
with the recorded ground reaction forces. This model has
36 rotational degrees of freedom corresponding to 16 joints
(see Fig. 3): ankle (2 DOF), knee (1 DOF), hip (3 DOF),
thorax (3 DOF), sternoclavicular (2 DOF), shoulder (3 DOF),
elbow (2 DOF), wrist (2 DOF) and head (3 DOF). There are
also 6 DOF (three rotations and three translations) from the
global coordinate system to the local coordinate system at

the hip. Our system is a motion capture system under partial
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Fig. 3: Articular notations of Human36

observation. Because of the limited field of view of 3D camera,
not all parts of body are captured, such as head, shank and
foot. In our 3D model body, we fix their associated degree-of-
freedom. Furthermore, the motion of human body is limited
by the walker. For example, the hands should always hold the
handles of walker. Therefore, in order to avoid instabilities
and non-natural poses, we predefine joint limits for all of the
articulated angles θ1, ..., θn of dynamic model:

θi =

 θmax
i if θi ≥ θmax

i

θmin
i if θi ≤ θmin

i

θi otherwise
(1)

where θmax
i and θmin

i are predefined joint limits for θi.

III. OUR EMBEDDED CAPTURE MOTION SYSTEM

In this section, we describe how the human body model
is fitted on the sensor data. Firstly, the sensors system is
presented. Secondly, we described the developed algorithm.

A. Description of the sensor system

We capture 3D data using SwissRanger SR4000 camera
based on the Time-Of-Flight distance measurement principle
[16], [17]. It sends short pulses of infrared light and analyse
their response. A part of emitted light is reflected from objects
in the field of view and returns to the 176x144 image sensor
of the camera. The time of arrival is measured independently
by each pixel and thus determines the distance between the
camera and objects. Each pixel (x, y) corresponds to a 3D
point (X,Y, Z). Based on this, three 176x144 maps (X map,
Y map and Z map), corresponding to the 3D points cloud, are
obtained. In order to estimate 3D human body posture during
walking, the 3D camera is installed on the walker (see Fig. 1
and 9).

Our robot will provide mobility assistance for the users in
daily life, thus the dimensions of the robot are limited. The
camera could not be mounted far from the user. Moreover, the
height of users are different. Only a part of head, the chest, the
arms and the upper of thighs will be captured for tall people;
and chest, arms and thighs will be obtained for short people.
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Fig. 4: Scheme of system under partial observation

The head of users could not guaranteed to be observed. We
choose two infrared distance sensors (Sharp GP2Y0A02YK
20cm -150 cm) to complement the walking user observation.
The two sensors were installed on the walker at 10 cm of the
ground. They could measure the distance between the walker
and ankle of user.

We define the middle point of two anterior wheels of walker
as the origin point, the direction from left to right as the
direction of X axis, the direction of walking as the direction
of Y axis and the vertical direction as the direction of Z axis
(see Fig. 8). The calibration process of this sensor is explained
in Section IV.

B. The 3D modeling algorithm

Our system is built on an iterative algorithm with three
main steps: 1) segmentation, 2) human limbs modeling and
3) human body modeling with Arboris. The objective of the
segmentation step is the extraction of the 3D data related to
each human limb. Unlike other approaches in the literature
[18], our 3D human body model fitting is decomposed in two
steps in order to reduce the cpu-time consuming and to avoid
numerical instabilities1. Then, the Gauss−Newton algorithm is
used to fit each limb by a cylinder. The 3D position of joints
could be obtained by computing parameters of cylinders and
combining the information of infrared distance sensors. Lastly,
the 3D body model will be reconstructed by minimizing the
quadratic error between the articular joints on the model and
the measured ones. These steps are detailed as follows (see
Fig. 4).

1) Segmentation: The 3D data of the chest, the arms and
the upper of thighs are recorded by the 3D camera. Based on
user’s anthropometric data [19], the 3D human body data can
be divided into different members: chest, upper arms, lower
arms and thighs.

1The involved minimisation process in the 3D human body model fitting
requires multiple inversions of jacobian matrix. The size of these matrix is
proportional to NxM , with N the number of data and M the number of
DOF. To decompose the global process in a set of local process reduces
considerably the computational complexity, i.e. the time consuming and the
numerical instabilities.

a) Depth-based background removal: The 3D data cor-
responding to the human body could be subtracted from the
background using a basic threshold process applied on the Z
map. We define a range of depth which corresponds with the
region of interest and eliminate any points that do not belong
to this range.

b) Geodesic distance: The geodesic distance is widely
used to analyze the movement of human body [18], [20]. The
advantage is that the geodesic distance between two points
of human body will not be changed during motion. Its value
is estimated by computing the length of the shortest path
between 2 points (called as the starting point and the final
point) belong the 3D surface using the Dijkstra’s algorithm.
Here this geodesic path could help us to detect limbs.
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Fig. 5: Four geodesic paths (white curve): from the point near
head 1. to the right hand; 2. to the right leg; 3. to the left leg;
4. to the left hand and the curve between limbs (black curve).

Four geodesic paths between the four extremities of the
limbs and a point near the head are computed. The projections
of these paths on a distance map (computed with the head
point as origin point) are shown in the figure 5. The head point
corresponds to the nearest point of the upper points in the Z
map. The positions of the hand points are computed knowing
the geometrical relation between the handles and the camera.
The thigh points are selected as the two extrema points of the
two modes (corresponding to the two legs) observed in the
values of the lower line in the Z map.

c) Different limbs detection: The four geodesic paths
are used to attribute the 3D data to the different limbs. The
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Fig. 6: An example of the projection of 3D curve (green solid
curve) between points of path 1 and path 2 on the X ′-Y ′ plane.
The red point (C) is the minimum point.
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Fig. 7: Different body limbs: (a) right upper arm and lower
arm (b) left upper arm and lower arm (c) right thigh (d) left
thigh

result of this segmentation is illustrated in the figure 7. Firstly,
selecting 2 points belonging to the same line in the Z map
and the adjacent geodesic paths, we compute the furthest point
between them. In the figure 6, it corresponds to the point C if
points A and B are considered to belong to the path 1 and 2
respectively. Beginning from the lower points of the four paths
and repeating the same process line after line until the distance
between the further point and the line connecting the 2 selected
points (the dashed blue line in the figure 6) is smaller than a
threshold, four frontier curves (black curves in the figure 5) are
obtained. Prolonging horizontally the left and the right curves,
we separate the arms from the chest. Prolonging vertically the
middle curve (to the left and to the right), we separate the
tights and the chest. Finally, according to the anthropometric
data, the length of body segments (Standard Human) is known;
using the geodesic distance from the hands, we can separate
the data belong to the lower arm from the ones belong to the
upper arm.

2) 3D human limbs modeling: After segmentation, we have
associated a 3D point cloud to each limb. The objective
of this step is the modeling of these 3D points for getting
certain feature points (the 3D articulation coordinates).Using
the iterative Gauss-Newton algorithm, a cylinder is fitted
to each limb’s cloud. The cylinder is specified by a point
(x0, y0, z0) on its axis, a vector (a, b, c) pointing along the axis
and its radius r. Using anthropomorphic data, we fix the length
of the cylinders. The bases of the finite cylinders are disks:
the centers of these circles could be associated to articular
joints. For the lower arms and the tights, they are deducted
from the positions of the extrema points (respectively near
the wrist and the hip) belong to the geodesic paths and the
limb’s cloud: these points should belong to the disks. The
knee articular joint positions is computed from the length of
the tights, the positions of the hip articular joints and the axis
directions of the corresponding cylinders. The elbow positions
are inferred as the middle point between the upper extrema
base of the lower arm cylinder and the intersection between
this disk and the axis of the upper arm cylinder. Finally the
shoulder positions are situated on this last axis using the length
of the upper arms.

3) 3D human body modeling with Arboris: From the pre-
vious step, approximate positions of 12 articular joints are
obtained: shoulder, elbow, wrist, hip, knee and ankle. We could
perform simulations and analysis walking motion by using
HuMAns toolbox (see Fig. 4). The joints trajectories are then
reconstructed by minimizing the quadratic error between the
articular joints on the model and the observed ones, using the
position of articular joints and jacobian matrix provided by
the HuMAns toolbox [14], [15].

IV. EXPERIMENTS AND RESULTS

In this section, we describe the experimental set up and
discus about the obtained results.

A. Calibration

Before the experiments, camera and infrared sensors have
been calibrated. A 3D pattern has been used to estimate the
relative geometric positions and orientations of the camera.
This pattern is composed by a 2D grid on the ground and
two others parallel grids (built by moving a vertical stick
as illustrated in the figure 8). The positions and orientations
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Fig. 8: Illustration of the camera calibration
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of the camera are defined respectively by the pairs (R, T ).
Each point can be represented by its coordinates written as
(xi, yi, zi, 1)

t in the camera-related homogeneous coordinate
system O. The relation between these coordinates and the
coordinates (x′i, y

′
i, z
′
i, 1)

t of the same points in the walker-
related coordinate system O′ is expressed as:

x′i
y′i
z′i
1

 =

(
R3x3 T3x1
0 1

)
×


xi
yi
zi
1

 (2)

From this relation and the known positions of the pattern
points expressed in each coordinate system, we can express
and resolve a system of linear equations which the unknowns
are (R, T ). Finally, the geometric positions of the infrared
sensors have been evaluated by moving a box on the ground
grid: a linear relation between the real distances and the
measured distances has been estimated.

B. Experimental protocol

Infrared 
distance sensor

3D TOF
camera

Fig. 9: Photography of the experimental setup

During the experiments, each tested subject has been
equipped with 16 Codamotion markers [7]. This system pro-
vides us a complete and accurate observation of the subject
motion during walking. The HuMAns toolbox and the com-
plete Human36 model have been utilized to analyze walking
motion. Subjects were asked to walk straight on a flat floor
using our walker system at their most comfortable pace as
shown in Fig. 9. Several measurements have been realized;
we present here a man who is 29 years old (1.75 m, 80 kg).
The collected data are compared with the ones obtained with
our motion capture system in the section IV-C.

C. Results and discussion

Image sequences in the figure 10 illustrate the obtained re-
sults using our embedded system and the Codamotion system.
We have computed the distances between them for different
articular joints: ankle, knee, hip, elbow, shoulder and wrist are
shown in Fig. 11. They are averaged over the right and left
sides of the body. We could also compute the trajectory of the
center of mass (COM) of human body walking for the two

(a) 1 s

(b) 2 s

(c) 3 s

(d) 4 s

Fig. 10: Illustration of the results obtained by our embedded
system (left) and the Codamotion system (right)

systems respectively using the HuMAnS toolbox, as shown in
Fig. 12. Each wave of the COM represents a gait cycle: its
rhythm and its complexity seem to be similar in both systems.
It is an important result because they are potentially useful
information to analyze the gait [21], [22]. The error values
relating to the upper part of the body (elbow, shoulder and
wrist) are around 50mm which are quite similar to other results
reported in the literature. Other markerless, vision based and
not embedded motion capture systems [12] achieve errors in
the range of 33.9−85 mm with most around 40−50 mm. The
error values relating to the body lower part are higher. It is
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Fig. 12: The trajectory of the center of mass (COM) during
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essentially due to the few and imprecise data provided by the
infrared sensors. In future works, we would test a rangefinder
laser (to replace the infrared sensor) and an other camera
with a larger field of view (e.g., Kinect) in order to improve
the system accuracy. Furthermore we plan to implement a
predictive process using a walking motion model in a tracking
scheme [23]. We would expect to measure the gap between the
predicted motion and the observed motion in order to detect
potential abnormal motions.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we have presented an embedded 3D motion
capture system using a 3D TOF camera and two infrared dis-
tance sensors. This system could help our intelligent mobility
assistive robot to detect abnormal situations during human
walking and therefore control the mobility assistance system
accordingly in order to prevent risks. We have computed
the joint trajectories corresponding to the walking motion by
using HuMAns toolbox. We compare the results obtained with
our system and the Codamotion system. Even if some local
errors are relatively high, the rhythm and the complexity of
the COM trajectory are quite similar in both systems. Some

improvements are proposed to increase the accuracy of our
system. Currently, we embed our motion capture system on a
non-robotic walker. We are planning to integrate the described
system in our robotic walker. The information provided by our
system would be combined with other ones (force-torque sen-
sor, electrocardio-monitoring system mounted in the handles
of the robot,...).
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